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We have already infroduced in lecture 4.1 the concept of generation
marginal prices, namely the variation of the cost of a generation unit
iIn each node as a function of the variation of the power generation of
the same unit.

We can extend this concept for the so-called locational marginal
prices (LMPs), namely the variation of the overall cost of electricity of
the system per variation of the demand at each (given) node.

LMPs are a way for wholesale electric energy prices to reflect the
value of electrical energy consumed at different locations, accounting
for the patterns of load, generation, and the physical limits of the
power system.

LMPs are computed from Lagrange multipliers. Let us first recall
classical results on Lagrange Multipliers from the textbook:

S. Boyd and L. Vandenberghe, “Convex Optimization”, Chapter 5,
https://stanford.edu/~boyd/cvxbook/]



https://stanford.edu/~boyd/cvxbook/
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Consider an optimization problem (P), written in Boyd and
Vandenberghe's standard form, defined for x € D ¢ R™ (where the
set D is the domain of definition of (P)):

(P) min f (x)

fl(x)<0 i=1:m
h;(x) =0, j=1p
x €D c R

The problem (P) is feasible if there is at least one x that safisfies the
constraints. If the problem is infeasible, we say that the optimal value
of (P) is +oo.

The problem (P) is unbounded if it is feasible and if forany M < 0
there is some x such that f(x) < M. If the problem (P) is unbounded
we say that the optimal value of (P) is —oo
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The Lagrangian of (P) is defined forx € D, 4; = 0 and v; € R as:

m p
LAY = FO) + ) Afi) + ) vihy()
i=—1 =1

Where A; and v; are the so-called Lagrange multipliers or duall
variables.
The dual function g(4,v) is given by the optimal value of the
unconstrained problem (U(4,v)) defined as:

(U, v)): mxin L(x, A,v)

S. t.
x €D

The function g(4,v) is defined on the set T of 4, v = 0 such that L(x, 4,v)
is bounded from below when x varies in D. The dual problem (D) is:

(D): max g4, v)

S.t.
(Av) €T
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Let p* be the optimal value of (P) and d* of (D).

@)F max g4,v)

where g(A,v) is given by
(U(A,v)): min L(x, A, v)
X

S.t.
x €D

Let us recall that, if p* = —oo, it implies (P) being unbounded and p* =
+ 0o means (P) is infeasible. Similarly (since (D) is a maximization
problem), d* = —oo means (D) is infeasible and d* = +o means (D) is
unbounded.

Result 1: weak duality d* < p*.

This always holds and is true even in the cases where d*, p* are
infinite. For example, Result T implies that if (D) is unbounded, then
(P) is infeasible.

p* —d* is called the duality gap and, in many cases of interest, it is 0.
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(P): min f (x) @)F max g4,v)

s.t.
(4 v)erT

where g(A,v) is given by
(U4, v)): min L(x,A,v)
X

S.t.
x €D

Definition: (x, 1) satisfy complementary slackness iff:

(fitx) =0andA; >0)or(4;=0) fori=1:m

Result 2 saddle-point: lef x* € D,A; = 0,i = 1:m,andv; €R,j = 1:p
such that: x* is optimal for (U(1*,v*)), x*is feasible for (P) and (x*, 1*)
satisfy complementary slackness. Then, we have that:

x* is optimal for (P) (recall L(x, A, v) = f(x) + X%, Aifi(x) + Z?zlvjhj(x))
(A%, v*) is optimal for (D)

p* = d* meaning strong duality

(x*, A*,v*) is called a saddle-point of the Lagrangian.

In this way we can replace the consirained problem (P) by the
unconstrained problem (U(A,v)).
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(P): min f (x) @)F max g4,v)

s.t.
(4 v)erT

where g(A,v) is given by
(U4, v)): min L(x,A,v)
X

S.t.
x €D

Result 3 Karush Kuhn Tucker conditions: assume (P) is convex, that all
functions f, f;, h; are differentiable and that:

x* €D, 4 =20,i=1:mandv; € R,j = 1:p safisty the KKT conditions:
VFlx™) + XA VA(ET) + X7 v Vhi(x™) = 0
x* is feasible for (P)
(x*, ") satisfy complementary slackness
Then, we have that:
1. x* is optimal for (P) KKT conditions are commonly
2. (A%, v") is optimal for (D) used when (P) is convex.
3. p*=d* (strong dudlity)
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(P): min f (x) @)F max g4,v)

s.t.
(4 v)erT

where g(A,v) is given by
(U4, v)): min L(x,A,v)
X

S.t.
x €D

Definition: constraint qualifications by Slater’'s conditions:
1. thereis atleast one feasible point;
2. equality constraints are affine (i.e., linear equalities or inequalities);

3. Inequality constraints are either affine or are satisfied strictly by af
least one feasible point.

Result 4 strong duality for convex problems: assume (P) is convex and
constraint qualifications hold and that x* is optimal for (P) and (1%, v*)
is optimal for (D). Then:

1. strong duality holds, i.e. d* = p*;
2.  x*is an optimal solution of U(A*,v");
3. (x* A" satisty complementary slackness.
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(P): min f (x) @)F max g4,v)

s.t.
(4 v)erT

where g(A,v) is given by
(U4, v)): min L(x,A,v)
X

S.t.
x €D

Result 5: KKT conditions are necessary whenever sirong duality holds:
let us assume the following: all functions f, f;, h; are differentiable, that

strong duality holds and that x* is optimal for (P) and A* = 0,v* is
optimal for (D). Then (x*, A%, v*) satisfy the KKT conditions.

Corollary: let us assume that (P) is convex and satisfies constraint
qualification and that all functions f, f;, h; are differentiable.

Then, forx* € D,4; = 0,i = I:mandv; € R,j = 1:p we have that

x* is optimal for (P) and A*,v* is optimal for (D) & (x*, A%, v*) satisty the
KKT conditions.
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Consider that the constraints are parameters that can be varied in the
problem (P), namely:
P(u,r): min f(x)
X

s.t. fi(x) <u;,Vi=1:m
hi(x) =7,Vj=1:p

Let c(u, r) be the optimal value of P(u,r).

Result é: let us assume that strong dudality holds and let 4;,v; be the

optimal Lagrange multipliers, i.e. they are solutions of (D). If c is
differentiable, then we have that:

ac
= —A; and — = —v;
aul = d 61‘] J

Interpretation of the so-called shadow price: by adding ¢; to the it*constraint
(= resource i) decreases the cost by 4;¢;. Assume we were offered to buy an
increase inresource i at a price < A; per unit. We would take it since the
benefit (decrease in cost) would be more than the price. Conversely, we
would not take an offer to buy an increase in resource i at a price > A; per
unit. Thus, 4; is the shadow price of resource i. Same with v;.
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Let us assume that the OPF is formulated as a convex problem (e.g. L-
OPF or DC-OPF) with affine inequality constraints, so that strong duality
holds.

P(u,v): min f(x)
X
S.t.
fl(x) < ui,‘v’i =1:m
hJ(X) = Uj,Vj = 1p

Assume that f(x) is the total cost of operation.

The locational marginal price for the load (or generator) at node h is
the partial derivative of the optimal cost c(u, v) with respect to the total
power demand (or generation) at node h:

m p

dc _z A*aul- +Z , 0v;
P, ‘9P, "I 3P,

i=1 =1

LMP, =

Observation: if the total cost includes terms other than f(x), they must
be accounted for when computing the parfial derivative (e.g. losses).
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Let us take back the DC-OPF example.

min C; (P, _
Pg,.Pgs ; i (Py,) B, = 400MW P,, = 233.33 MW
s.t. 13 equality P, =100 MW b, = 100 MW
_ constraints

P, =22.2(=6;) +11.1(=63) — ~ = 3 mulfipliers Y., = (—j22.2)pu
P, =22.2(6,) +11.1(6; — 63) — Py, v; p ——p g
P, =111(05) + 111 (0 —6;) — By, - 1 ] 5 ?
—PMax*< 222 (0 — 6,) < PMAX 16 inequality Yy3 = (—j11.Dpu Y23 = (—j11.Dpu
 pmax _ max - constraints

Pis™ < 11.1(0 — 63) < Py33 = 16 multipliers A; 3 S, = 100MW
—PY* < 11.1(0, — 63) < P VZ = 220kV

—n<0;<mi=1,2 93

Pl3 == 500 MW

dc B
vy = LMP;, = — = 75.67 CHF /MW h Pg3 = 66.67 MW

P,
;
2 i 79
dc Cy,Cy, Cs 15,1,225 CHF /MWh
vy > LMPy = 2 — = 225 CHF /MW h e
ls smax gmax gm 200,200,300 MW

Similarly, LMPs can be computed with

respectto F; P, F,.
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It is interesting to compute the Lagrange multipliers for the inequality
constraints:

00000 | Ap Rleccklll fhe corg.rileme?ffary P, = 400MW P, = 23333 MW
0.0000 A SiIacKness condition. a e P11 — 100 MW Plz — 100 MW

00000 | 2. optimum, when strong duality

holds, an inequality constraint

00000 4-p, s satisfied with equality 9 — 9
37333 lp.  (the constraint is active) iff the 1 2
00000 | A, =~ corresponding multiplieris # 0. Pis = 233-33MW\ / Pz = 200 MW
Y13 = (—j11.Dpu Y23 = (—j11.Dpu
P Here, th fraints that
ere, the constraints that are
0.0000 | A, . 3 Sp = 100MW
active are V, = 220kV
00000 | A max g ’
05 11.1 (92 - 93) < P2’3 3
090 | A-e, Fy, = 400MW fi, = 500 MW B,, = 66.67 MW
(] ] L] [ ] 3 ’
6066.7 | 1p,  Generator 1 is at its limit, and
0000 1., SO isthe power flow on the
00000 | 7y, line 23. pjmin, pmax 0 =+ 400 MW
00000 | 1 Cy,Cy, Cs 15,1,225 CHF /MWh
max max max
00000 7, S Sl G 200,200,300 MW

0.0000 | A_p
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It is interesting to compute the Lagrange multipliers for the inequality

constraints:
00000 | 2p,,
00000 | A_p,
0.0000 | Zp,
00000 | A_p,
37333 Ap,,
0.0000 | A_p,
0.0000 | Zg,
0.0000 | A,
0.0000 2o,
0.0000 | A_g,
6066.7 Ap,.
0.0000 | A_p
0.0000 | Ap_
0.0000 _p,,
0.0000 Ap,,
0.0000 | A_p,

We can verify what happens
if we increase the generation
capacity of generator 1 by
1MW

Generators (MW) =
400.0000 233.3333 66.6667
Power Flows (MW) =
66.6667 233.3333 200.0000
Optimal Cost =
2.1233e+04

Generators (MW) =
401.0000 232.6667 66.3333
Power Flows (MW) =
67.3333 233.6667 200.0000
Optimal Cost =
2.1173e+04

The total cost decreases by

60 CHF. The marginal

cost of generator 1 is

60 CHF /MWh

as predicted by its

multiplier (recall S, = 100 MWV).

pg = 400MW sz = 233.33 MW
1
P, =100 MW P, =100 MW
Y12 = (—j22.2)pu
91 92
| 2
P 3 = 233.33MW P,5 =200 MW
Y13 = (—j11.Dpu Y23 = (—j11.Dpu
3 S, = 100MW
V, = 220kV

93

Pl3 == 500 MW _
P,, = 66.67 MW

pjnin, pjnax 0 + 400 MW
C1,C2, Cy 15,1,225 CHF /MWh
ST5%, SJ3ex, Sphex 200,200,300 MW
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It is interesting to compute the Lagrange multipliers for the inequality

constraints:
0.0000 Ap,,
0.0000 | A_p
0.0000 | Zp,
0.0000 | A_p_
37333 Ap,,
0.0000 | A_p,
0.0000 2o,
0.0000 | A,
0.0000 2o,
0.0000 | A_g,
6066.7 Ap,.
0.0000 | A_p
0.0000 | Ap_
0.0000 _p,,
0.0000 Ap,,
0.0000 | A_p

We can verify what happens
if we increase the capacity
of line 2 -» 3 by 1MW

Max branch flows (MW) =
200 300 200
Generators (MW) =

400.0000 233.3333 66.6667
Power Flows (MW) =
66.6667 233.3333 200.0000
Optimal Cost =
2.1233e+04
Max branch flows (MW) =
200.0000 300.0000 201.0000
Generators (MwW) =
400.0000 235.0000 65.0000

Power Flows (MW) =
66.0000 234.0000 201.0000
Optimal Cost =
2.0860e+04
The total cost decreases by 373 CHF
equal to marginal cost of the power
flow constraint is 373 CHF/MVW, as
quantified by the value of the
multiplier (recall S, = 100 MW). If we
could buy more capacity, we would
accept to pay at most 373 CHF/MW; if
the price is less, we make a profit; if it
is more, we lose money.

Py, = 400MW Py, = 233.33 MW
P, = 100 MW P, =100 MW
Y12 = (—j22.2)pu
91 %)

2,3 = (—jlll)pu

—
| 2
P 3 = 233.33MW P,5 =200 MW
Y13 = (—j11.Dpu Y

S, = 100MW
V, = 220kV
g3

Pl3 == 500 MW _
P,, = 66.67 MW

pjnin, pjnax 0 + 400 MW
C1,C2, Cy 15,1,225 CHF /MWh
ST5%, SJ3ex, Sphex 200,200,300 MW
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