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We have already introduced in lecture 4.1 the concept of generation 
marginal prices, namely the variation of the cost of a generation unit 
in each node as a function of the variation of the power generation of 
the same unit.

We can extend this concept for the so-called locational marginal 
prices (LMPs), namely the variation of the overall cost of electricity of 
the system per variation of the demand at each (given) node.

LMPs are a way for wholesale electric energy prices to reflect the 
value of electrical energy consumed at different locations, accounting 
for the patterns of load, generation, and the physical limits of the 
power system.

LMPs are computed from Lagrange multipliers. Let us first recall 
classical results on Lagrange Multipliers from the textbook:
S. Boyd and L. Vandenberghe, “Convex Optimization”, Chapter 5, 
https://stanford.edu/~boyd/cvxbook/]
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Consider an optimization problem (𝑃), written in Boyd and 
Vandenberghe’s standard form, defined for 𝑥 ∈ 𝒟 ⊂ ℝ𝑛  (where the 
set 𝒟 is the domain of definition of (𝑃)):

𝑃 : min 𝑓(𝑥)
𝑠. 𝑡.
𝑓𝑖 𝑥 ≤ 0, 𝑖 = 1: 𝑚
ℎ𝑗 𝑥 = 0, 𝑗 = 1: 𝑝

𝑥 ∈ 𝒟 ⊂ ℝ𝑛

The problem (𝑃) is feasible if there is at least one 𝑥 that satisfies the 
constraints. If the problem is infeasible, we say that the optimal value 
of (𝑃) is +∞.

The problem (𝑃) is unbounded if it is feasible and if for any 𝑀 < 0 
there is some 𝑥 such that  𝑓 𝑥 ≤ 𝑀.  If the problem (𝑃) is unbounded 
we say that the optimal value of (𝑃) is −∞.
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The Lagrangian of (𝑃) is defined for 𝑥 ∈ 𝒟, 𝜆𝑖 ≥ 0 and 𝜈𝑗 ∈ ℝ as:

𝐿 𝑥, 𝜆, 𝜈 = 𝑓 𝑥 + ෍

𝑖=1

𝑚

𝜆𝑖𝑓𝑖 𝑥 + ෍

𝑗=1

𝑝

𝜈𝑗ℎ𝑗 𝑥

Where 𝜆𝑖 and 𝜈𝑗 are the so-called Lagrange multipliers or dual 

variables.
The dual function 𝑔 𝜆, 𝜈  is given by the optimal value of the 
unconstrained problem 𝑈(𝜆, 𝜈)  defined as:

𝑈(𝜆, 𝜈) : min
𝑥

 𝐿 𝑥, 𝜆, 𝜈

s. 𝑡.
𝑥 ∈ 𝒟

The function 𝑔 𝜆, 𝜈  is defined on the set Γ of 𝜆, 𝑣 ≥ 0 such that 𝐿 𝑥, 𝜆, 𝜈  
is bounded from below when 𝑥 varies in 𝒟. The dual problem 𝐷  is:

𝐷 : max
𝜆,𝜈

 𝑔(𝜆, 𝜈)

s. t.
(𝜆, 𝜈) ∈ Γ
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Let  𝑝∗ be the optimal value of (𝑃) and 𝑑∗ of (𝐷).

Let us recall that, if 𝑝∗ = −∞, it implies (𝑃) being unbounded and 𝑝∗ =
+ ∞ means (𝑃) is infeasible. Similarly (since (𝐷) is a maximization 
problem), 𝑑∗ = −∞ means (𝐷) is infeasible and 𝑑∗ = +∞ means (𝐷) is 
unbounded. 

Result 1: weak duality 𝑑∗ ≤ 𝑝∗.

This always holds and is true even in the cases where 𝑑∗, 𝑝∗ are 
infinite. For example, Result 1 implies that if (𝐷) is unbounded, then 
(𝑃) is infeasible.

𝑝∗ − 𝑑∗ is called the duality gap and, in many cases of interest, it is 0.

𝑃 : 𝑚𝑖𝑛 𝑓(𝑥)
𝑠. 𝑡.
𝑓𝑖 𝑥 ≤ 0, 𝑖 = 1: 𝑚
ℎ𝑗 𝑥 = 0, 𝑗 = 1: 𝑝

𝑥 ∈ 𝒟 ⊂ ℝ𝑛

𝐷 : 𝑚𝑎𝑥
𝜆,𝜈

 𝑔(𝜆, 𝜈)

𝑠. t.
(𝜆, 𝜈) ∈ Γ

𝑤ℎ𝑒𝑟𝑒 𝑔 𝜆, 𝜈 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦
𝑈(𝜆, 𝜈) : 𝑚𝑖𝑛

𝑥
 𝐿 𝑥, 𝜆, 𝜈

𝑠. 𝑡.
𝑥 ∈ 𝒟
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𝑃 : 𝑚𝑖𝑛 𝑓(𝑥)

𝑠. 𝑡.
𝑓𝑖 𝑥 ≤ 0, 𝑖 = 1: 𝑚
ℎ𝑗 𝑥 = 0, 𝑗 = 1: 𝑝

𝑥 ∈ 𝒟 ⊂ ℝ𝑛

𝐷 : 𝑚𝑎𝑥
𝜆,𝜈

 𝑔(𝜆, 𝜈)

𝑠. t.
(𝜆, 𝜈) ∈ Γ

𝑤ℎ𝑒𝑟𝑒 𝑔 𝜆, 𝜈 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦
𝑈(𝜆, 𝜈) : 𝑚𝑖𝑛

𝑥
 𝐿 𝑥, 𝜆, 𝜈

𝑠. 𝑡.
𝑥 ∈ 𝒟

Definition: (𝑥, 𝜆) satisfy complementary slackness iff:
𝑓𝑖 𝑥 = 0 and 𝜆𝑖 > 0  or 𝜆𝑖 = 0  for 𝑖 = 1: 𝑚 

Result 2 saddle-point: let 𝑥∗ ∈ 𝒟, 𝜆𝑖
∗ ≥ 0, 𝑖 = 1: 𝑚, and 𝜈𝑗

∗ ∈ ℝ, 𝑗 = 1: 𝑝 

such that: 𝑥∗ is optimal for 𝑈 𝜆∗, 𝜈∗ , 𝑥∗ is feasible for (𝑃) and (𝑥∗, 𝜆∗) 

satisfy complementary slackness. Then, we have that: 

𝑥∗ is optimal for (𝑃) (recall 𝐿 𝑥, 𝜆, 𝜈 = 𝑓 𝑥 + σ𝑖=1
𝑚  𝜆𝑖𝑓𝑖 𝑥 + σ𝑗=1

𝑝
𝜈𝑗ℎ𝑗 𝑥 )

(𝜆∗, 𝜈∗) is optimal for (𝐷)

𝑝∗ = 𝑑∗ meaning strong duality

(𝑥∗, 𝜆∗, 𝜈∗) is called a saddle-point of the Lagrangian.

In this way we can replace the constrained problem (𝑃) by the 
unconstrained problem 𝑈(𝜆, 𝜈) .
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𝑃 : 𝑚𝑖𝑛 𝑓(𝑥)

𝑠. 𝑡.
𝑓𝑖 𝑥 ≤ 0, 𝑖 = 1: 𝑚
ℎ𝑗 𝑥 = 0, 𝑗 = 1: 𝑝

𝑥 ∈ 𝒟 ⊂ ℝ𝑛

𝐷 : 𝑚𝑎𝑥
𝜆,𝜈

 𝑔(𝜆, 𝜈)

𝑠. t.
(𝜆, 𝜈) ∈ Γ

𝑤ℎ𝑒𝑟𝑒 𝑔 𝜆, 𝜈 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦
𝑈(𝜆, 𝜈) : 𝑚𝑖𝑛

𝑥
 𝐿 𝑥, 𝜆, 𝜈

𝑠. 𝑡.
𝑥 ∈ 𝒟

Result 3 Karush Kuhn Tucker conditions: assume (𝑃) is convex, that all 
functions 𝑓, 𝑓𝑖 , ℎ𝑗 are differentiable and that:

𝑥∗ ∈ 𝒟, 𝜆𝑖
∗ ≥ 0, 𝑖 = 1: 𝑚 and 𝜈𝑗

∗ ∈ ℝ, 𝑗 = 1: 𝑝 satisfy the KKT conditions:

 ∇𝑓 𝑥∗ + σ𝑖
𝑚 𝜆𝑖

∗∇𝑓𝑖 𝑥∗ + σ𝑖
𝑚 𝜈𝑖

∗∇ℎ𝑗 𝑥∗ = 0

 𝑥∗ is feasible for (𝑃) 

 (𝑥∗, 𝜆∗) satisfy complementary slackness

Then, we have that:

1. 𝑥∗  is optimal for (𝑃)

2. (𝜆∗, 𝜈∗) is optimal for (𝐷)

3. 𝑝∗ = 𝑑∗ (strong duality)

KKT conditions are commonly 
used when (P) is convex.
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𝑃 : 𝑚𝑖𝑛 𝑓(𝑥)

𝑠. 𝑡.
𝑓𝑖 𝑥 ≤ 0, 𝑖 = 1: 𝑚
ℎ𝑗 𝑥 = 0, 𝑗 = 1: 𝑝

𝑥 ∈ 𝒟 ⊂ ℝ𝑛

𝐷 : 𝑚𝑎𝑥
𝜆,𝜈

 𝑔(𝜆, 𝜈)

𝑠. t.
(𝜆, 𝜈) ∈ Γ

𝑤ℎ𝑒𝑟𝑒 𝑔 𝜆, 𝜈 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦
𝑈(𝜆, 𝜈) : 𝑚𝑖𝑛

𝑥
 𝐿 𝑥, 𝜆, 𝜈

𝑠. 𝑡.
𝑥 ∈ 𝒟

Definition: constraint qualifications by Slater’s conditions:

1. there is at least one feasible point;

2. equality constraints are affine (i.e., linear equalities or inequalities);

3. inequality constraints are either affine or are satisfied strictly by at 
least one feasible point.

Result 4 strong duality for convex problems: assume (𝑃) is convex and 
constraint qualifications hold and that 𝑥∗ is optimal for (𝑃) and (𝜆∗, 𝜈∗) 
is optimal for 𝐷 . Then:

1. strong duality holds, i.e. 𝑑∗ = 𝑝∗; 

2.  𝑥∗ is an optimal solution of 𝑈(𝜆∗, 𝜈∗);

3.  (𝑥,∗  𝜆∗) satisfy complementary slackness.
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𝑃 : 𝑚𝑖𝑛 𝑓(𝑥)

𝑠. 𝑡.
𝑓𝑖 𝑥 ≤ 0, 𝑖 = 1: 𝑚
ℎ𝑗 𝑥 = 0, 𝑗 = 1: 𝑝

𝑥 ∈ 𝒟 ⊂ ℝ𝑛

𝐷 : 𝑚𝑎𝑥
𝜆,𝜈

 𝑔(𝜆, 𝜈)

𝑠. t.
(𝜆, 𝜈) ∈ Γ

𝑤ℎ𝑒𝑟𝑒 𝑔 𝜆, 𝜈 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦
𝑈(𝜆, 𝜈) : 𝑚𝑖𝑛

𝑥
 𝐿 𝑥, 𝜆, 𝜈

𝑠. 𝑡.
𝑥 ∈ 𝒟

Result 5: KKT conditions are necessary whenever strong duality holds: 
let us assume the following: all functions 𝑓, 𝑓𝑖 , ℎ𝑗 are differentiable, that 

strong duality holds and that 𝑥∗ is optimal for (𝑃) and 𝜆∗ ≥ 0, 𝜈∗ is 
optimal for (𝐷). Then (𝑥∗, 𝜆∗, 𝜈∗) satisfy the KKT conditions.

Corollary:  let us assume that (𝑃) is convex and satisfies constraint 
qualification and that all functions 𝑓, 𝑓𝑖 , ℎ𝑗 are differentiable.

Then, for 𝑥∗ ∈ 𝒟, 𝜆𝑖
∗ ≥ 0, 𝑖 = 1: 𝑚 and 𝜈𝑗

∗ ∈ ℝ, 𝑗 = 1: 𝑝 we have that

𝑥∗ is optimal for (𝑃) and 𝜆∗, 𝜈∗ is optimal for (𝐷) ⇔ (𝑥∗, 𝜆∗, 𝜈∗) satisfy the 
KKT conditions.
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Consider that the constraints are parameters that can be varied in the 
problem (𝑃), namely:

𝑃 𝑢, 𝑟 : min
𝑥

𝑓 𝑥  

 𝑠. 𝑡. 𝑓𝑖 𝑥 ≤ 𝑢𝑖 , ∀𝑖 = 1: 𝑚
 ℎ𝑗 𝑥 = 𝑟𝑗 , ∀𝑗 = 1: 𝑝

Let 𝑐(𝑢, 𝑟) be the optimal value of 𝑃 𝑢, 𝑟 .

Result 6: let us assume that strong duality holds and let 𝜆𝑖
∗, 𝜈𝑗

∗ be the 

optimal Lagrange multipliers, i.e. they are solutions of (𝐷). If 𝑐 is 
differentiable, then we have that:

𝜕𝑐

𝜕𝑢𝑖
= −𝜆𝑖

∗ and 
𝜕𝑐

𝜕𝑟𝑗
= −𝜈𝑗

∗

Interpretation of the so-called shadow price: by adding 𝜀𝑖 to the 𝑖𝑡ℎconstraint 

(= resource 𝑖) decreases the cost by 𝜆𝑖𝜀𝑖. Assume we were offered to buy an 

increase in resource 𝑖 at a price < 𝜆𝑖 per unit. We would take it since the 

benefit (decrease in cost) would be more than the price. Conversely, we 
would not take an offer to buy an increase in resource 𝑖 at a price > 𝜆𝑖 per 

unit. Thus, 𝜆𝑖 is the shadow price of resource 𝑖. Same with 𝜈𝑗.
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Let us assume that the OPF is formulated as a convex problem (e.g. L-
OPF or DC-OPF) with affine inequality constraints, so that strong duality 
holds.

𝑃 𝑢, 𝑣 : min
𝑥

𝑓 𝑥  

𝑠. 𝑡. 
𝑓𝑖 𝑥 ≤ 𝑢𝑖 , ∀𝑖 = 1: 𝑚
ℎ𝑗 𝑥 = 𝑣𝑗 , ∀𝑗 = 1: 𝑝

Assume that 𝑓(𝑥) is the total cost of operation.

The locational marginal price for the load (or generator) at node ℎ is 
the partial derivative of the optimal cost 𝑐(𝑢, 𝑣) with respect to the total 
power demand (or generation) at node ℎ:

𝐿𝑀𝑃ℎ =
𝜕𝑐

𝜕𝑃𝑙ℎ

= ෍

𝑖=1

𝑚

−𝜆𝑖
∗ 𝜕𝑢𝑖

𝜕𝑃𝑙1

+ ෍

𝑗=1

𝑝

−𝜈𝑗
∗

𝜕𝑣𝑗

𝜕𝑃𝑙1

Observation: if the total cost includes terms other than 𝑓(𝑥), they must 
be accounted for when computing the partial derivative (e.g. losses).



Let us take back the DC-OPF example.

min
𝑃𝑔2 ,𝑃𝑔3

෍

𝑖=1

3

𝐶𝑖 𝑃𝑔𝑖

𝑠. 𝑡.

𝑃𝑙1
= 22.2 −𝜃2 + 11.1 −𝜃3 − 𝑃𝑔1

𝑃𝑙2
= 22.2 𝜃2 + 11.1 𝜃2 − 𝜃3 − 𝑃𝑔2

𝑃𝑙3
= 11.1 𝜃3 + 11.1 𝜃3 − 𝜃2 − 𝑃𝑔3

𝑃𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖

≤ 𝑃𝑔𝑖
𝑚𝑎𝑥, 𝑖 = 1,2,3

−𝑃1,2
𝑚𝑎𝑥≤ 22.2 0 − 𝜃2 ≤ 𝑃1,2

𝑚𝑎𝑥

−𝑃1,3
𝑚𝑎𝑥 ≤ 11.1 0 − 𝜃3 ≤ 𝑃1,3

𝑚𝑎𝑥

−𝑃2,3
𝑚𝑎𝑥≤ 11.1 𝜃2 − 𝜃3 ≤ 𝑃2,3

𝑚𝑎𝑥

−𝜋 ≤ 𝜃𝑖 ≤ 𝜋, 𝑖 = 1,2

𝑣1 → 𝐿𝑀𝑃1 =
𝜕𝑐

𝜕𝑃𝑙1
 

= 75.67 𝐶𝐻𝐹/𝑀𝑊ℎ

𝑣2 → 𝐿𝑀𝑃2 =
𝜕𝑐

𝜕𝑃𝑙2
 

= 1 𝐶𝐻𝐹/𝑀𝑊ℎ

𝑣3 → 𝐿𝑀𝑃3 =
𝜕𝑐

𝜕𝑃𝑙3
 

= 225 𝐶𝐻𝐹/𝑀𝑊ℎ

Similarly, LMPs can be computed with
respect to 𝑃𝑔1

, 𝑃𝑔2,𝑃𝑔3

12

1 2

3

𝑔1

𝑔3

𝑔2

𝑃𝑙1
= 100 𝑀𝑊 𝑃𝑙2

= 100 𝑀𝑊

𝑃𝑙3
= 500 𝑀𝑊

𝑌2,3 = −𝑗11.1 𝑝𝑢

𝑌1,2 =  −𝑗22.2 𝑝𝑢

𝑌1,3 = −𝑗11.1 𝑝𝑢

𝑆𝑏 = 100𝑀𝑊
𝑉𝑏 = 220𝑘𝑉
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16 inequality 

constraints
⇒ 16 multipliers 𝜆𝑖

3 equality 

constraints
⇒ 3 multipliers
𝑣𝑗

𝑃𝑔3
= 66.67 𝑀𝑊

𝑃𝑔2
= 233.33 𝑀𝑊𝑃𝑔1

= 400𝑀𝑊

𝑃2,3 = 200 𝑀𝑊𝑃1,3 = 233.33𝑀𝑊

Quantity Value

𝑃𝑔𝑖
𝑚𝑖𝑛, 𝑃𝑔𝑖

𝑚𝑎𝑥 0 ÷ 400 𝑀𝑊

𝐶1, 𝐶2, 𝐶3 15, 1, 225 𝐶𝐻𝐹/𝑀𝑊ℎ

𝑆12
𝑚𝑎𝑥, 𝑆23

𝑚𝑎𝑥, 𝑆31
𝑚𝑎𝑥 200, 200, 300 𝑀𝑊



It is interesting to compute the Lagrange multipliers for the inequality 
constraints:

 

13

1 2

3

𝑔1

𝑔3

𝑔2

𝑃𝑙1
= 100 𝑀𝑊 𝑃𝑙2

= 100 𝑀𝑊

𝑃𝑙3
= 500 𝑀𝑊

𝑌2,3 = −𝑗11.1 𝑝𝑢

𝑌1,2 =  −𝑗22.2 𝑝𝑢

𝑌1,3 = −𝑗11.1 𝑝𝑢

𝑆𝑏 = 100𝑀𝑊
𝑉𝑏 = 220𝑘𝑉
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𝑃𝑔3
= 66.67 𝑀𝑊

𝑃𝑔2
= 233.33 𝑀𝑊𝑃𝑔1

= 400𝑀𝑊

𝑃2,3 = 200 𝑀𝑊𝑃1,3 = 233.33𝑀𝑊

0.0000 𝜆𝑃12

0.0000 𝜆−𝑃12

0.0000 𝜆𝑃13

0.0000 𝜆−𝑃13

37333 𝜆𝑃23

0.0000 𝜆−𝑃23

0.0000 𝜆𝜃2

0.0000 𝜆−𝜃2

0.0000 𝜆𝜃3

0.0000 𝜆−𝜃3

6066.7 𝜆𝑃𝑔1

0.0000 𝜆−𝑃𝑔1

0.0000 𝜆𝑃𝑔2

0.0000 𝜆−𝑃𝑔2

0.0000 𝜆𝑃𝑔3

0.0000 𝜆−𝑃𝑔3

Recall the complementary 

slackness condition: at the 

optimum, when strong duality 

holds, an inequality constraint 

is satisfied with equality
(the constraint is active) iff the 

corresponding multiplier is ≠ 0.

Here, the constraints that are 

active are 
11.1  𝜃2 − 𝜃3 ≤ 𝑃2,3

𝑚𝑎𝑥

𝑃𝑔1
≤ 400𝑀𝑊

Generator 1 is at its limit, and 

so is the power flow on the 

line 23. 

Quantity Value

𝑃𝑔𝑖
𝑚𝑖𝑛, 𝑃𝑔𝑖

𝑚𝑎𝑥 0 ÷ 400 𝑀𝑊

𝐶1, 𝐶2, 𝐶3 15, 1, 225 𝐶𝐻𝐹/𝑀𝑊ℎ

𝑆12
𝑚𝑎𝑥, 𝑆23

𝑚𝑎𝑥, 𝑆31
𝑚𝑎𝑥 200, 200, 300 𝑀𝑊



It is interesting to compute the Lagrange multipliers for the inequality 
constraints:
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1 2

3

𝑔1

𝑔3

𝑔2

𝑃𝑙1
= 100 𝑀𝑊 𝑃𝑙2

= 100 𝑀𝑊

𝑃𝑙3
= 500 𝑀𝑊

𝑌2,3 = −𝑗11.1 𝑝𝑢

𝑌1,2 =  −𝑗22.2 𝑝𝑢

𝑌1,3 = −𝑗11.1 𝑝𝑢

𝑆𝑏 = 100𝑀𝑊
𝑉𝑏 = 220𝑘𝑉

Locational marginal prices

𝑃𝑔3
= 66.67 𝑀𝑊

𝑃𝑔2
= 233.33 𝑀𝑊𝑃𝑔1

= 400𝑀𝑊

𝑃2,3 = 200 𝑀𝑊𝑃1,3 = 233.33𝑀𝑊

0.0000 𝜆𝑃12

0.0000 𝜆−𝑃12

0.0000 𝜆𝑃13

0.0000 𝜆−𝑃13

37333 𝜆𝑃23

0.0000 𝜆−𝑃23

0.0000 𝜆𝜃2

0.0000 𝜆−𝜃2

0.0000 𝜆𝜃3

0.0000 𝜆−𝜃3

6066.7 𝜆𝑃𝑔1

0.0000 𝜆−𝑃𝑔1

0.0000 𝜆𝑃𝑔2

0.0000 𝜆−𝑃𝑔2

0.0000 𝜆𝑃𝑔3

0.0000 𝜆−𝑃𝑔3

We can verify what happens 

if we increase the generation 

capacity of generator 1 by 

1𝑀𝑊

Generators (MW) =

  401.0000  232.6667   66.3333

Power Flows (MW) =

   67.3333  233.6667  200.0000

Optimal Cost =

   2.1173e+04

Generators (MW) =

  400.0000  233.3333   66.6667

Power Flows (MW) =

   66.6667  233.3333  200.0000

Optimal Cost =

   2.1233e+04

The total cost decreases by 
60 𝐶𝐻𝐹. The marginal

cost of generator 1 is

60 𝐶𝐻𝐹/𝑀𝑊ℎ
as predicted by its
multiplier (recall 𝑆𝑏 = 100 𝑀𝑊).

Quantity Value

𝑃𝑔𝑖
𝑚𝑖𝑛, 𝑃𝑔𝑖

𝑚𝑎𝑥 0 ÷ 400 𝑀𝑊

𝐶1, 𝐶2, 𝐶3 15, 1, 225 𝐶𝐻𝐹/𝑀𝑊ℎ

𝑆12
𝑚𝑎𝑥, 𝑆23

𝑚𝑎𝑥, 𝑆31
𝑚𝑎𝑥 200, 200, 300 𝑀𝑊



It is interesting to compute the Lagrange multipliers for the inequality 
constraints:
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1 2

3

𝑔1

𝑔3

𝑔2

𝑃𝑙1
= 100 𝑀𝑊 𝑃𝑙2

= 100 𝑀𝑊

𝑃𝑙3
= 500 𝑀𝑊

𝑌2,3 = −𝑗11.1 𝑝𝑢

𝑌1,2 =  −𝑗22.2 𝑝𝑢

𝑌1,3 = −𝑗11.1 𝑝𝑢

𝑆𝑏 = 100𝑀𝑊
𝑉𝑏 = 220𝑘𝑉

Locational marginal prices

Quantity Value

𝑃𝑔𝑖
𝑚𝑖𝑛, 𝑃𝑔𝑖

𝑚𝑎𝑥 0 ÷ 400 𝑀𝑊

𝐶1, 𝐶2, 𝐶3 15, 1, 225 𝐶𝐻𝐹/𝑀𝑊ℎ

𝑆12
𝑚𝑎𝑥, 𝑆23

𝑚𝑎𝑥, 𝑆31
𝑚𝑎𝑥 200, 200, 300 𝑀𝑊

𝑃𝑔3
= 66.67 𝑀𝑊

𝑃𝑔2
= 233.33 𝑀𝑊𝑃𝑔1

= 400𝑀𝑊

𝑃2,3 = 200 𝑀𝑊𝑃1,3 = 233.33𝑀𝑊

0.0000 𝜆𝑃12

0.0000 𝜆−𝑃12

0.0000 𝜆𝑃13

0.0000 𝜆−𝑃13

37333 𝜆𝑃23

0.0000 𝜆−𝑃23

0.0000 𝜆𝜃2

0.0000 𝜆−𝜃2

0.0000 𝜆𝜃3

0.0000 𝜆−𝜃3

6066.7 𝜆𝑃𝑔1

0.0000 𝜆−𝑃𝑔1

0.0000 𝜆𝑃𝑔2

0.0000 𝜆−𝑃𝑔2

0.0000 𝜆𝑃𝑔3

0.0000 𝜆−𝑃𝑔3

We can verify what happens 

if we increase the capacity 

of line 2 → 3 by 1𝑀𝑊

Max branch flows (MW) =

  200.0000  300.0000  201.0000

Generators (MW) =

  400.0000  235.0000   65.0000

Power Flows (MW) =

   66.0000  234.0000  201.0000

Optimal Cost =

   2.0860e+04

Max branch flows (MW) =

   200   300   200

Generators (MW) =

  400.0000  233.3333   66.6667

Power Flows (MW) =

   66.6667  233.3333  200.0000

Optimal Cost =

   2.1233e+04

The total cost decreases by 373 𝐶𝐻𝐹 

equal to marginal cost of the power 
flow constraint is 373 𝐶𝐻𝐹/𝑀𝑉𝑊, as 

quantified by the value of the 
multiplier (recall 𝑆𝑏 = 100 𝑀𝑊). If we 
could buy more capacity, we would 

accept to pay at most 373 𝐶𝐻𝐹/𝑀𝑊; if 
the price is less, we make a profit; if it 

is more, we lose money.
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